Duality of Maximum Entropy and Minimum Divergence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality of Maximum Entropy and Minimum Divergence

We discuss a special class of generalized divergence measures by the use of generator functions. Any divergence measure in the class is separated into the difference between cross and diagonal entropy. The diagonal entropy measure in the class associates with a model of maximum entropy distributions; the divergence measure leads to statistical estimation via minimization, for arbitrarily giving...

متن کامل

A Maximum Entropy/minimum Divergence Translation Model

I present empirical comparisons between a standard statistical translation model and an equivalent Maximum Entropy/Minimum Divergence (MEMD) model, using several diierent methods for automatic feature selection. Results show that the MEMD model signiicantly outperforms the standard model in test corpus perplexity, even though it has far fewer parameters.

متن کامل

A Maximum Entropy/Minimum Divergence Translation Model

I present empirical comparisons between a linear combination of standard statistical language and translation models and an equivalent Maximum Entropy/Minimum Divergence (MEMD) model, using several diierent methods for automatic feature selection. The MEMD model signiicantly outperforms the standard model in test corpus per-plexity, even though it has far fewer parameters.

متن کامل

Fast computation of maximum entropy / minimum divergence feature gain

Maximum entropy / minimum divergence modeling is a powerful technique for constructing probability models, which has been applied to a wide variety of problems in natural language processing. A maximum entropy / minimum divergence (memd) model is built from a base model, and a set of feature functions, also called simply features, whose empirical expectations on some training corpus are known. ...

متن کامل

3 : Maximum Likelihood / Maximum Entropy Duality

In the previous lecture we defined the principle of Maximum Likelihood (ML): suppose we have random variables X1, ..., Xn form a random sample from a discrete distribution whose joint probability distribution is P (x | φ) where x = (x1, ..., xn) is a vector in the sample and φ is a parameter from some parameter space (which could be a discrete set of values — say class membership). When P (x | ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2014

ISSN: 1099-4300

DOI: 10.3390/e16073552